Experiment of Ultimate Shear Failure and Friction Sliding Performance of Rubber Bearings of Bridges

نویسنده

  • Li Yue
چکیده

The results showed that (1) the ultimate shear deformation of the rubber bearings with two fixed end plates reached 300% to 400% of the rubber layer thickness. The damage was mainly focused on the rubber layer fracture. The energy dissipation capacity of the bearings was weak, and the hysteresis curve presented a narrow zonal shape. (2) The rubber bearings with unilateral friction sliding had a similar energy dissipation capacity compared to the LRB. The maximum energy dissipation in a single cycle could reach 126% of the LRB’s maximum energy dissipation. With an increase in the sliding distance, the dissipated energy continuously increased. The shear deformation of the bearing no longer increased after reaching its maximum. After the test, the bearings remained in good condition. The hysteresis curves of load-displacement presented a bilinear shape. (3) Under cyclic loading, the energy dissipation capacity of LRBs was stable. The LRBs played an effective role in energy dissipation during loading. After the test, the LRBs nearly returned to their original condition. The hysteresis curves of LRB were always fuller than the laminated rubber bearings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismic Performance of seat-type bridges with elastomeric bearings

In Iran and some other countries, elastomer bearings in seat-type bridges are used with no sole/masonry plates and there is no positive connection between superstructure and substructure. Different codes have diverse provisions regarding the coefficient of friction (μ) between elastomer bearing and superstructure/substructure and also the design strength of shear keys (Vsk). Developing a finite...

متن کامل

Development of Low-friction Factor Sliding Isolation Device

Sliding bearings with low coefficient of friction enable the base isolation system with longer natural period than previous ones and to be effective even for small to medium earthquakes. This paper introduces the sliding bearings with low coefficient of friction, which is almost under 0.03. It is shown that newly developed materials for the sliding bearings contribute to reduce coefficient of f...

متن کامل

Study on the Friction of Bored Cylindrical Rubber Protrusions Sliding on Ceramic

The present work aims at reducing the friction of rubber soles sliding on ceramic floorings. Fitting bored cylindrical protrusions with different diameters on rubber soles was proposed. Experiments were carried out to evaluate the performance of the proposed protrusions in increasing friction coefficient at dry and contaminated floorings. It was found that, at dry sliding, friction coefficient ...

متن کامل

Tribological Performance of a Polymer Blend of NBR Used for Stern Bearings

Nitrile-butadiene rubber (NBR) and another polymer with an excellent self-lubricating property are blended to develop a new kind of polymer used for water-lubricated stern bearings. The tribological performance of the new Polymer Blend of NBR (PBN), with the comparison of a rubber common used for most stern bearings, was studied using a stern bearing test rig of SSB-100. The results showed that...

متن کامل

Tribological Properties of Water-lubricated Rubber Materials after Modification by MoS2 Nanoparticles

Frictional vibration and noise caused by water-lubricated rubber stern tube bearings, which are generated under extreme conditions, severely threaten underwater vehicles' survivability and concealment performance. This study investigates the effect of flaky and spherical MoS2 nanoparticles on tribological properties and damping capacity of water-lubricated rubber materials, with the aim of decr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017